Rice University Research Repository


The Rice Research Repository (R-3) provides access to research produced at Rice University, including theses and dissertations, journal articles, research center publications, datasets, and academic journals. Managed by Fondren Library, R-3 is indexed by Google and Google Scholar, follows best practices for preservation, and provides DOIs to facilitate citation. Woodson Research Center collections, including Rice Images and Documents and the Task Force on Slavery, Segregation, and Racial Injustice, have moved here.



 

Recent Submissions

Item
Nano-sized boron-doped diamond (BDD) enabled electrodes
(2024-09-17) Westerhoff, Paul K.; Garcia-segura, Sergio; Sinha, Shahnawaz; Bansal, Rishabh; Verduzco, Rafael; Wong, Michael S.; Rice University; Arizona Board of Regents on behalf of Arizona State University; United States Patent and Trademark Office
An electrode includes an electrically conductive substrate with a coating containing boron-doped diamond (BDD) nanoparticles. Fabricating the electrode can include dispersing BDD nanoparticles in a solvent to yield a suspension, coating a conductive substrate with the suspension, and drying the suspension to yield the electrode. In some cases, fabricating the electrode includes combining BDD nanoparticles with a polymeric resin precursor to yield a mixture including a metal oxide, coating a conductive substrate with the mixture to yield a coated substrate, and calcining the coated substrate to yield a metal oxide coating including BDD nanoparticles. In certain cases, fabricating the electrode includes combining powdered activated carbon with polymeric linkers to yield a polymeric precursor solution, combining BDD nanoparticles with the polymeric precursor solution to yield a mixture, coating a conductive substrate with the mixture to yield a coated substrate, and crosslinking the polymeric linkers to yield the electrode.
Item
Anodes, cathodes, and separators for batteries and methods to make and use same
(2024-09-10) Tour, James M.; Salvatierra, Rodrigo Villegas; Silva, Gladys Anahi Lopez; Rice University; United States Patent and Trademark Office
Anodes, cathodes, and separators for batteries (electrochemical energy storage devices). The anodes are Li metal anodes having lithiated carbon films (Li-MWCNT) (as dendrite suppressors and protective coatings for the Li metal anodes). The cathodes are sulfurized carbon cathodes. The separators are GNR-coated (or modified) separators. The invention includes each of these separately (as well as in combination both with each other and with other anodes, cathodes, and separators) and the methods of making each of these separately (and in combination). The invention further includes a battery that uses at least one of (a) the anode having a lithiated carbon film, (b) the sulfurized carbon cathode, and (c) the GNR-modified separator in the anode/cathode/separator arrangement. For instance, a full battery can include the sulfurized carbon cathode in combination with the Li-MWCNT anode or a full battery can include the sulfurized carbon cathode in combination with other anodes (such as a GCNT-Li anode).
Item
Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service
(Springer Nature, 2024) CMS Collaboration
Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
Item
Machine Learning to Enhance Electronic Detection of Diagnostic Errors
(American Medical Association, 2024) Zimolzak, Andrew J.; Wei, Li; Mir, Usman; Gupta, Ashish; Vaghani, Viralkumar; Subramanian, Devika; Singh, Hardeep
Item
Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection
(Springer Nature, 2024) Hasegawa, H.; Argall, M. R.; Aunai, N.; Bandyopadhyay, R.; Bessho, N.; Cohen, I. J.; Denton, R. E.; Dorelli, J. C.; Egedal, J.; Fuselier, S. A.; Garnier, P.; Génot, V.; Graham, D. B.; Hwang, K. J.; Khotyaintsev, Y. V.; Korovinskiy, D. B.; Lavraud, B.; Lenouvel, Q.; Li, T. C.; Liu, Y.-H.; Michotte de Welle, B.; Nakamura, T. K. M.; Payne, D. S.; Petrinec, S. M.; Qi, Y.; Rager, A. C.; Reiff, P. H.; Schroeder, J. M.; Shuster, J. R.; Sitnov, M. I.; Stephens, G. K.; Swisdak, M.; Tian, A. M.; Torbert, R. B.; Trattner, K. J.; Zenitani, S.; Rice Space Institute
There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth’s magnetosphere.